SIRFAX

Your Internet Fax Company

SRFAX Fax APl Documentation
RESTful web services

Revision Date: September 19, 2014

The materials and sample code are provided only for the purpose of an existing or potential customer
evaluating or implementing a programmatic integration with the SRFAX fax service.

CONTENTS

CONTENTS

Overview

The SRFax Fax APl an application programmer to integrate Fax capabilities into their application utilizing
the SRFax API. The integration itself is done via RESTful web services via HTTPS POST operations.

Queue_Fax
POST Variables
Returned Variables (JSON or XML Encoded)
NOTIFY URL POST Response

Get_FaxStatus
POST Variables
Returned Variables (JSON or XML Encoded)

Get_MultiFaxStatus
POST Variables
Returned Variables (JSON or XML Encoded)

Get_Fax_Inbox
POST Variables
Returned Variables (JSON or XML Encoded)

Get_Fax_Outbox
POST Variables
Returned Variables (JSON or XML Encoded)

Retrieve_Fax
POST Variables
Returned Variables (JSON or XML Encoded)

Update_Viewed_Status
POST Variables
Returned Variables (JSON or XML Encoded)

Delete_Fax
POST Variables
Returned Variables (JSON or XML Encoded)

Stop_Fax
POST Variables
Returned Variables (JSON or XML Encoded)

Get_Fax_Usage
POST Variables
Returned Variables (JSON or XML Encoded)

PHP Code Examples
Queue_Fax
Get_FaxStatus
Retrieve_Fax

VWOVUYOY VOO INNN O LA b W

~ o =
S C

~ o =
o

N =
NN DN

o =
W wWw

~N =
NN

[R N
NG

Overview

The SRFax Fax APl an application programmer to integrate Fax capabilities into their
application utilizing the SRFax API. The integration itself is done via RESTful web services via
HTTPS POST operations.

POSTS are sent to the following URL:

https://www.srfax.com/SRF_SecWebSvc.php

This same URL is used for all operations. This documentation illustrates both required and
optional variables that are sent to the web service in order to accomplish each operation.
Responses from the SRFAX web service are also provided.

There are nine (10) basic operations detailed below.

1 Queue_Fax - Schedules a fax to be sent with or without cover page.

2 Get_FaxStatus — Determines the status of a fax that has been scheduled for delivery.
Get_MultiFaxStatus — Determines the status of a multiple faxes that hav been
scheduled for delivery.

Get_Fax_Inbox - Returns a list of faxes received for a specified period of time
Get_Fax_Outbox - Returns a list of faxes sent for a specified period of time
Retrieve Fax — Returns a specified sent or received fax file in PDF or TIFF format
Update_Viewed_Status — Mark a inbound or outbound fax as read or unread.
Delete_Fax - Deletes specified received or sent faxes

Delete_Pending_Fax - Deletes a specified queued fax which has not been processed
10 Get_Usage — Usage report for a specified user and period.

O 0 39 N L

SRFax is also willing to develop additional REST services if requested for specific client
requirements. Please contact support@srfax.com for making additional requests.

Queue_Fax

POST Variables

Part Name Type Description

action Required Must be “"Queue_Fax”

access_id: Required User Number

access_pwd: Required Password on the user’s account

sCallerID: Required Senders Fax Number (must be 10 digits)

sSenderEmail Required Senders Email Address

sFaxType: Required “"SINGLE” or "BROADCAST"”

sToFaxNumber: Required Required - 11 digit number or up to 50 x 11
digit fax numbers separated by a “|” (pipe).

sResponseFormat Optional “XML"” or "JSON” - Default is JSON

sAccountCode: Optional Optional - internal reference number (Max of
20 Characters)

sRetries: Optional Number of times the system is to retry a

number if busy or an error is encountered -
number from 0 to 6.

sCoverPage Optional If you want to use one of the cover pages on
file, specify the cover page you wish to use
“Basic”, “Standard”, “Company” or
“Personal”. If a cover page is not provided then
all cover page variable will be ignored.

NOTE: If the default cover page on the account
is set to “"Attachments ONLY” the cover page
will NOT be created irrespective of this

variable.
sFaxFromHeader Optional From: On the Fax Header Line (max 30 Char)
sCPFromName Optional Sender’s name on the Cover Page
sCPToName Optional Recipient’'s name on the Cover Page
sCPQOrganization Optional Organization on the Cover Page
sCPSubject Optional Subject line on the Cover Page**
sCPComments Optional Comments placed in the body of the Cover
Page
sFileName_x* Optional Valid File Name - See Supported File Types
below
sFileContent_x* Optional Base64 encoding of file contents.
sNotifyURL Optional Provide an absolute URL (beginning with

http:// or https://) and the SRFax system will
POST back the fax status record when the fax
completes. See the '"NOTIFY URL POST' section
below for details of what is posted.

Notes:

* *You are able to send an unlimited number of files with their content — simply
replace the “x” with the number order you wish the files to be faxed in. Please
ensure that the sFileName_1 has content in sFileContent_1 etc.

e **The subject line details are saved in the fax record even is a cover page is
not requested - so the subject can be used for filtering / searching

* You are able to send a fax with just the cover page details.

Returned Variables (JSON or XML Encoded)

Status: string

“Success” or “Failed”

Result: string

Queued Fax ID (FaxDetailsID) or Reason for
failure

Supported File Types
We support in excess of 156 different file types

including .zip, but a summarized list of

supported file types is available on our website at https://www.srfax.com/fags If you wish to
know about other file types, please contact customer service.

NOTIFY URL POST Response

If the sNotifyURL is provided in the initial Queue Fax call, the same variables returned
from the Get Fax_Status will be sent the URL you provide as POST variables. At any

time you are still able to poll the fax status by

calling Get Fax_ Status if the sNotifyURL is

missed for any reason. The variables sent are as follows:

Part Name Description
FaxDetailsID Fax Job ID
FileName Name of the fax file
SentStatus Status of the fax
AccountCode Account Code provided when fax was scheduled
DateQueued Date the fax was queued for delivery
DateSent Date the fax was sent
ToFaxNumber Recipient Fax Number
Pages Total number of pages
Duration Call length for transmission
RemotelD Remote Fax ID
ErrorCode Error message in the event of a failed fax
Size Size of the file
NOTE:

You have to setup the URL provided in the sNotifyURL so that it can handle a POST

of the variables listed above.

Get_FaxStatus

POST Variables

Part Name Type Description

action Required Must be “"Get_FaxStatus”

access_id: Required User Account Number

access_pwd: Required Password on the user’s account
sFaxDetailsID: Required FaxDetailsID returned from Queue_Fax post.
sResponseFormat Optional “XML"” or "JSON” - Default is JSON

Returned Variables (JSON or XML Encoded)

Status:

string

“Success” or “Failed”

Result:

string

Array of the fax properties as follows:
array(
FileName,
SentStatus,
DateQueued,
DateSent,
ToFaxNumber
Pages,
Duration,
RemotelD,
ErrorCode,
Size)

Note: If an error is found then the reason for
failure will be in the Result string.

Get_MultiFaxStatus

POST Variables

Part Name Type Description

action Required Must be “"Get_FaxStatus”

access_id: Required User Account Number

access_pwd: Required Password on the user’s account

sFaxDetailsID: Required Multiple FaxDetailsIDs can be requested by
separating each FaxDetailsID with a pipe
character “|".

sResponseFormat Optional “XML"” or "JSON” - Default is JSON

Returned Variables (JSON or XML Encoded)

Status:

string

“Success” or “Failed”

Result:

string

Array of the fax properties as follows:
Array[#]->array(
FileName,
SentStatus,
DateQueued,
DateSent,
ToFaxNumber
Pages,

Duration,
RemotelD,
ErrorCode,

Size)

Note: If an error is found then the reason for
failure will be in the Result string.

Get_Fax_Inbox

POST Variables

Part Name Type Description

action Required Must be “"Get_Fax_Inbox”

access_id: Required User Account Number

access_pwd: Required Password on the user’s account

sResponseFormat Optional “XML"” or "JSON” - Default is JSON

sPeriod: Optional “ALL” or "RANGE"” - if not provided defaults to
“ALL”

sStartDate: Optional Only required if "RANGE” specified in sPeriod -
date format must be “"YYYYMMDD"

sEndDate: Optional Only required if “RANGE” specified in sPeriod -
date format must be “"YYYYMMDD"”

sViewedStatus Optional “"UNREAD” only show faxes that have not been
read.
“"READ” only show faxes that have been read.
“ALL"” show all faxes irrespective of Viewed
Status.
If one is not supplied the action will return ALL
faxes.

sIncludeSubUsers Optional Set to “Y” if function is to include all faxes

received by sub users of the account as well.

Returned Variables (JSON or XML Encoded)

Status:

string

“Success” or “Failed”

Result:

string

Array of the fax properties as follows:
array(
FileName,
ReceiveStatus,
Date,
EpochTime,
CallerID,
RemotelD,
Pages,

Size,
ViewedStatus)

If sIncludeSubUsers is set to “Y” then two
additional variables are returned in the array:

User_ID
User_FaxNumber

Note: If an error is found then the reason for
failure will be listed in the Result string.

Get_Fax_Outbox

POST Variables

Part Name Type Description

action Required “Get_Fax_Outbox”

access_id: Required User Account Number

access_pwd: Required Password on the user’s account

sResponseFormat Optional “XML"” or "JSON” - Default is JSON

sPeriod: Optional “ALL” or "RANGE"” - if not provided defaults to
“ALL”

sStartDate: Optional Only required if "RANGE" specified in sPeriod -
date format must be “"YYYYMMDD"

sEndDate: Optional Only required if "RANGE" specified in sPeriod -
date format must be “"YYYYMMDD"”

sIncludeSubUsers Optional Set to “Y” if function is to include all faxes
received by sub users of the account as well.

Returned Variables (JSON or XML Encoded)

Status:

string

“Success” or “Failed”

Result:

string

Array of the fax properties as follows:
array(
FileName,
SentStatus,
DateQueued,
DateSent,
EpochTime,
ToFaxNumber
Pages,
Duration,
RemotelD,
ErrorCode,
AccountCode,
Subject,

Size)

If sIncludeSubUsers is set to “Y” then two
additional variables are returned in the array:

User_ID
User_FaxNumber

Note: If an error is found then the reason for
failure will be in the Result string.

Retrieve_Fax

POST Variables

Part Name Type Description

action Required “Retrieve_Fax”

access_id: Required User Account Number

access_pwd: Required Password on the user’s account

sFaxFileName: Required* sFaxFileName returned from Get_Fax_Inbox
or Get_Fax_Outbox post

sFaxDetailsID Required* sFaxDetailsID of the fax - the ID is located
after the “|” character of the sFaxFileName

sDirection: Required “IN” or “"OUT” for inbound or outbound fax

sResponseFormat Optional “XML"” or "JSON” - Default is JSON

sFaxFormat Optional “PDF” or “TIF” defaults to account setting if not
supplied

sMarkasViewed Optional “Y” - mark fax as viewed once method

completes successfully
“N” or not provided: leave viewed status as is.
Not

* Either the sFaxFileName or the sFaxDetailsID must be supplied.

Returned Variables (JSON or XML Encoded)

Status:

string

“Success” or “Failed”

Result:

string

Base64 encoded fax file contents. The file
format will be in PDF or TIF format depending
on format requested or the settings selected on
the account.

Note 2: If an error is found then the reason for
failure will be in the Result string.

Update_Viewed_Status

POST Variables

Part Name Type Description
action Required “Update_Viewed_Status”
access_id: Required User Account Number
access_pwd: Required Password on the user’s account
sFaxFileName: Required* sFaxFileName returned from Get_Fax_Inbox
or Get_Fax_Outbox post
sFaxDetailsID Required* sFaxDetailsID of the fax — the ID is located
after the “|” character of the sFaxFileName
sDirection: Required “IN” or “"OUT” for inbound or outbound fax
sMarkasViewed Required “Y” - mark fax as READ
"N” - mark fax as UNREAD
sResponseFormat Optional “XML"” or "JSON” - Default is JSON

* Either the sFaxFileName or the sFaxDetailsID must be supplied.

Returned Variables (JSON or XML Encoded)

Status:

string

“Success” or “Failed”

Result:

string

Empty String

Note 2: If an error is found then the reason for
failure will be in the Result string.

Delete_Fax

POST Variables

Part Name Type Description

action Required “Delete_Fax”

access_id: Required User Account Number

access_pwd: Required Password on the user’s account

sDirection: Required “IN” or "OUT” for inbound or outbound fax

sFaxFileName_x Required* sFaxFileName returned from Get_Fax_Inbox
or Get_Fax_Outbox post. You are able to
provide an unlimited number of fax file names
by replacing the "x” with a sequential number.

sFaxDetailsID_x Required* sFaxDetailsID of the fax - the ID is located
after the “|” character of the sFaxFileName.
You are able to provide an unlimited humber of
fax ID’s by replacing the “x” with a sequential
number.

sResponseFormat Optional “XML"” or "JSON” - Default is JSON

* Either the sFaxFileName_x or the sFaxDetailsID_x must be supplied.

Returned Variables (JSON or XML Encoded)

Status:

string

“Success” or “Failed”

Result:

string

Empty String on Success or the reason for
failure

Stop_Fax

POST Variables

Part Name Type Description

action Required “Stop_Fax”

access_id: Required User Account Number

access_pwd: Required Password on the user’s account
sFaxDetailsID: Required FaxDetailsID returned from Queue_Fax post.
sResponseFormat Optional “XML"” or "JSON” - Default is JSON

Returned Variables (JSON or XML Encoded)

Status:

string

“Success” or “Failed”

Result:

string

Empty String on Success or the reason for
failure

This function is used for removing a scheduled fax from the queue once it has been
scheduled. Please note that depending on where the fax is in the process, it is
possible to have some pages sent by the time the fax is stopped.

Possible results are:

Status = Success:
Result:

e “Fax cancelled but partially sent” - fax was successfully cancelled but
whatever was in the fax buffer will have been sent.
* “Fax Cancelled” - the fax was successfully cancelled without any pages being

sent.

Status = Failed:
Result:

* “Fax transmission completed” - the fax has been sent and the transaction is

complete

e “Unable to Cancel Fax” - Fax in the process of conversion and cannot be
cancelled at this time - you can try again in 10 seconds.

Get_Fax_Usage

POST Variables

Part Name Type Description

action Required “Get_Fax_Usage”

access_id: Required User Account Number

access_pwd: Required Password on the user’s account

sResponseFormat Optional “XML"” or "JSON” - Default is JSON

sPeriod: Optional “ALL” or "RANGE"” - if not provided defaults to
“ALL”

sStartDate: Optional Only required if "RANGE" specified in sPeriod -
date format must be “"YYYYMMDD"

sEndDate: Optional Only required if "RANGE" specified in sPeriod -
date format must be “"YYYYMMDD"”

sIncludeSubUsers Optional Set to “Y” if function is to include all usage by
sub users of the account

Returned Variables (JSON or XML Encoded)

Status:

string

“Success” or “Failed”

Result:

string

Array of the fax properties as follows:
array(

ClientID,

Period,

ClientName,

SubUserID,

BillingNumber,

NumberOfFaxes,

NumberOfPages

)

Note: If an error is found then the reason for
failure will be in the Result string.

PHP Code Examples

Below are examples of 3 API functions (Queue_Fax, Get_FaxStatus, and
Retrieve_Fax) using the srFax class available at :
https://www.srfax.com/SRFax_API_Class/getSRF_APIClass.php

Though not every API function is shown here, there is documentation on how to call
every function found inside the class source code

Queue_Fax

<?php

/*
* SRFax APl Example - Queue a fax using the srFax Class

*/
require_once ("srFax_class.php");

SaccountID ="12345";
SaccountPassword ="MyPassword123";

// instantiate object with Account ID and Password
SsrFax = new srFax (SaccountID, SaccountPassword);

//Get file contents for the fax
SfilelName = "MyFax.txt";
SfilelContents = base64_encode(file_get_contents("Files/SfileIName"));

Sfile2Name = "Testlmage.jpg";
S$file2Contents = base64_encode(file_get_contents("Files/$file2Name"));

//Setup required variables
SsenderFaxNumber ="5551234567";
SsenderEmail = "myEmail@example.com";
SreceiverFaxNumber = "15551234567";

try {
// attempt to queue a fax
SsrFax->Queue_Fax(array(
'sCallerID' => SsenderFaxNumber,
'sSenderEmail' => SsenderEmail,
'sFaxType' =>'SINGLE',
'sToFaxNumber' => SreceiverFaxNumber,
'sFileName_1' => SfilelName,
'sFileContent_1'=> $filelContents,
'sFileName_2' => S$file2Name,
'sFileContent_2' => $file2Contents,
));
}

catch (Exception Se) {// display error when exception is thrown
die("Error: Se");

}

if (SsrFax->getRequestStatus ()) {

echo "Success! Fax Details ID =" . SsrFax->getRequestResponse ();
}else {

echo "ERROR: " . SsrFax->getRequestResponse ();
}
>

Get_FaxStatus
<?php

/*
* SRFax APl Example - Retrieve a fax's status using the srFax Class

*/
require_once ("srFax_class.php");

SaccountID ="12345";
SaccountPassword ="MyPassword123";

// instantiate object with Account ID and Password
SsrFax = new srFax (SaccountID, SaccountPassword);

try {

SsrFax->Get_FaxStatus(array(
'sFaxDetailsID' => '12345678',
)
}

catch (Exception Se) {// display error when exception is thrown
die("Error: Se");

}

if (SsrFax->getRequestStatus ()) {
//Success! Output Fax Details
Sresponse = SsrFax->getRequestResponse ();

echo "Fax Details:
\n";

echo "FileName: " . Sresponse->FileName . "
\n";

echo "Status: " . Sresponse->SentStatus . "
\n";

echo "Date Queued: " . Sresponse->DateQueued . "
\n";

echo "Date Sent: " . Sresponse->DateSent . "
\n";

echo "Number of Pages: " . Sresponse->Pages . "
\n";
}else {

echo "ERROR: " . SsrFax->getRequestResponse ();
}

?>

Retrieve_Fax

<?php

/*
* SRFax APl Example - Retrieve a fax using the srFax Class

*/
require_once ("srFax_class.php");

SaccountID ="12345";
SaccountPassword ="MyPassword123";

// instantiate object with Account ID and Password
SsrFax = new srFax (SaccountID, SaccountPassword);

try {

SsrFax->Retrieve_Fax(array(
'sFaxDetailsID' => '12345678,
'sDirection' =>'0OUT', //retrieving an outbound fax

));
}

catch (Exception Se) {// display error when exception is thrown
die("Error: Se");

}
if (SsrFax->getRequestStatus ()) {
//Success! Save the Retrieved Fax to a file.

SlocalPath = "Files/";
SlocalFileName = "retrievedFax.pdf";

SsrFax->savelastResponseAsFile(SlocalFileName, SlocalPath);
echo "Success. Fax saved to" . SlocalPath.SlocalFileName;
}else {

echo "ERROR: " . SsrFax->getRequestResponse ();
}

?>

